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Oxygen ordering in YBa~Cu306+, : low-temperature 
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Abtraet. Low-temperature series expansions are used to investigate the phase h’ansilion due 
to oxygen ordering in the high-temperanue superconductor YBazCu306+,. The formulation 
is based on the lutice-gas model, which has been studied by many authors, and excellent 
agreement with previous resulfs is obtained. We also investigate the effect of a sublattice- 
dependent chemical potential which plays a role similar to a nniaxial swess in b d g  me 
degeneracy between twinned srmcrureS. 

1. Introduction 

One of the interesting aspects of the high-tqnperature superconductor YBazCu~06+, is 
the role played by the variable oxygen content, both on the structural properties at high 
temperature and on the superconducting transition itself. 

The structure of the material is by now well known [l], and consists of layers of fixed 
stoichiometry as well as, in each unit cell, a particular layer which has variable oxygen 
content. In accordance with common usaE we refer to ,these the ‘Cud planes’. EBch 
CuO plane, shown in figure l(a), consists of an approximately square network of Cu ions 
separated by 0 sites. At x = 0 , l  the 0 sites are ‘wpectively empty and half-filled. The 
matkal can exist in a high-temperature tetragonal phase, in which the oxygen sites are 
occupied randomly and an orthorhombic phase in.which the oxygens’are., at least partially 
ordered in parallel chains. Such structures are shown in figures l(b), (c). The tetragonal- 
orthorhombic structural phase transition depends on the oxygen content and occurs at 900- 
1000 K. The superconducting transition ‘temperature also correlates with oxygen content 
[Z, 31 but the basis for this relationship is not clear. 

From a variety of experiments we may then infer a phase diagram in the ( x ,  T) and 
(p, T) planes which, at least qualitatively, has the form shown in figure 2. De Fontaine et 
al [4] proposed a lattice-gas model to represent the essential physics of the oxygen ordering. 
The model has three separate interactions, represented by effective pair energies V I ,  V,, V, 
as shown in figure 3. The interactions VI and V, ire assumed to be repulsive whereas Vz, 
which is mediated by an intervening Cu ion, is attractive. This foUows from an analysis of 
the ground-state phase diagram of the model [5]. Other models have also been proposed, 
notably those of Khachatulyan et al [6], Aligia et al [7], and Zubhs et al [SI. A large 
number of studies of this model have been reported [9-17], using Monte Carlo simulations, 
cluster-variation calculations and transfer matrix calculations. Broadly speaking agreement 
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Figure 1. (U)  S m h u e  of the CuO plane. The small 
dots are filled Cu sites, the large circles e 0 sites, 
which may be filled or empty. (b) The fully ordered 
s m m r e  with x = 1. (c) A genernl anfiguration 
showing paRial order and twinning. IC1 

with the schematic phase diagram is obtained, although a number of open questions remain. 
Among these are the nature of the transition at low T, the existence of an equilibrium 
phase (anti-Ortho I) at low x ,  and the possible existence of other equilibrium structures 
with different periodicities. The existence of such structures is not predicted by this model, 
and requires the inclusion of longer range interactions [7,18,19]. 

We have investigated this model by the method of low-temperature expansions [20,21]. 
We report results for the Ortho I-Tetra transition line, our numerical values being in close 
agreement with previous work. In addition we model the effect of uniaxial stress on the 
material, which is often applied during growth to prevent twinning [ZZ-241, and we estimate 
the change in transition temperature which results. 

2. Low-temperature expansions 

Derivation of low-temperature expansions for any system, where. the ground state is known 
and the excited states and their excitation energies can be enumerated, starts from the 
expression 

Here EO is the gound-state energy per site and the summation is over excited states, which 
we identify with graphs on the lattice. ac is the usual ‘strong’ lattice constant of the 
graph [20], BEG is the corresponding excitation energy, and f l =  l /kT as usual. Thus an 
expansion is associated with a particular ordered state and different regions of the phase 
diagram will lead to different expansions. 
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F i e  2. Schematic phase diagram (a)  in the x-T 
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Egure 3. The lattice-gas model with interactions VI, 
v2, v3. 

The lattice-gas Hamiltonian 141 is 

where n, = 0,l is an occupation number at site i, p is the chemical potential, and the 
summations are over the appropriate pairs. It is convenient, though not essential, to write 
(2) in terms of king variables U, = kl, via ni = (1 -U;)/& so that an unoccupied site has 
spin up. The Hamiltonian becomes 

with Ji = V,/4 and h = (26 + Vz + V3 - p ) / Z .  This is an king model with nearest- 
neighbour antiferromagnetic interactions, anisotropic next-nearest-neighbour interactions, 
with an external magnetic field h. 

In this paper we choose the ground state of the system to be one of the two degenerate 
N&I states, with U = -1, +1 on sublattices A, B respectively. In latticegas language this 
is the fully ordered x = 1 configuration, with all sites on sublattice A occupied and all sites 
on sublattice B empty. For any perturbed configuration the energy change can be expressed 
as 

A E  = 4p1 JI + 4p21 Jzl + 4p3 53 + 2p4h (4) 

where p , ,  p ~ ,  p3, p4 are integers defined by PI = 2r - SI. pz = r - SZ. p3 = r - s3, 
p4 = 2 r ~  - r with r = number of overturned spins from ground state, r A  = number of 
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Figure 4. Low-order perturbed configurations and Figure 5. The Ortho I-Teh phase boundary as 
corresponding expansion panmeten. obtained from low-temp” ~series, for the cases 

5 = l.L%(unifom chemical potential) and < = -0.95, 
For comparison the transfer matrix results [17] are also 
shown. 

overturned spins on sublattice A and si = number of bonds of type i (i = 1,2,3) in the 
cluster of overtumed spins. 

In figure 4 we list the lowest few’ perturbed configurations with their lattice constants 
ac and descriptors (pi). 

To determine the phase boundary for the model it is necessary to compute series for 
the order parameter andlor for the ordering susceptibility. For this reason we include a 
‘staggered field‘ in the king Hamiltonian 

(5) H’ = H - h s x q j c j  
i 

with qj  = +1, -1 for sublattice A, B respectively. 
The expansion for the free energy per spin can finally be expressed in the form 

-Bf = -BEo+~L,(ul,uz.u3.Y)Y: (6) 
r 

with 

(PI (7) 
u1 = ,-BVz u2 = ,-BlV,l u3 = eOV, y = e  -28h ys = e-2Bhs. 

The series for the order parameter (staggered magnetization) and ordering susceptibility are. 
then obtained from (6) as 
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kTxS = 4 E r 2 L , ( u ~ , ~ ~ , u 3 , y ) .  (9) 
,=I 

The first two Ls can be obtained from the information in figure 4(b) as 

(10) 

(11) 

with the notation 6, = (y" + y-")/2. Higher order terms are obtained using basically 
standard methods [20], which involve 

2 Ll = u1u2ugB1 

L~ = ~ U , U , U ~  3 2 2  + U ; U ~ U : O ~  + U ; U ; U ~ B ~  - 2 . 5 u ~ u : ~ ; e ~  - ~u;u:u: 

(i) computer generation of all bare graphs with r vertices and any number of edges; 
(i) embedding of each graph in the lattice and storage of vertex and edge types in each 

(iii) accumulation of data for all graphs. 

We have obtained the complete L, multinomials for r < 7. There are a total of 426 
hare graphs which contribute to this order. If we wish to group terms by powers of ut, 
for example, then some contributions from higher order graphs must also be included. In 
particular to obtain a series in u t  through order 8 a partial set of graphs with up to 16 
vertices is needed. In the appendix we give the leading parts of the L, multinomials for 
r < 16. From these we can then obtain the corresponding series for Ms and ,ys. 

embedding; and 

3. Analysis and results 

The parameters vi in the latticegas Hamiltonian (2) should be regarded as 'effective pair 
interactions' which can be obtained from a fit to the experimental phase diagram. Hilton et 
al [25] have recently attempted to do this, and the reasonable agreement of their interaction 
parameters with the first-principles estimates of S te"  and Wille 1261 indicates that other 
interactions not included in the latticegas Hamiltonian (2) are of minor importance. In this 
paper we are not so concerned with modelling the real system, but rather with more general 
(and more qualitative) aspects and we choose the values (in dimensionless units) VI = 1, 
V2 = -0.5, V3 = 0.5. This is the choice made by previous authors [12,17] and has the 
virtue that we can direcfly compare our estimated phase boundary with this previous work. 
Other choices of the parameters lead to qualitatively similar phase diagrams. 

Except for very special choices of the ratios Vz/V,, h/V, the expansion variables 
U, are not simply related and the series cannot be directly expressed in terms of a single 
variable. Instead we adopt the following approach we choose fixed values of UZ. u3, y and 
analyse the resulting single variable series in U, to find the critical value ulc. By varying 
the choice of ( ~ 2 ,  ug) we can find a case where, on the critical line, the desired ratio of Vs 
holds. In practice we have used the series for the order parameter Ms. In table 1 we give 
the coefficients of this series for several cases. The series can be analysed by standard Pad6 
approximant methods to yield estimates of ulC and the critical exponent @, which appears to 
take the universal ZD king value @ = 1/8. Assuming this value, more precise estimates of 
the critical temperature can be obtained from the series for M;'. Vpical results are. shown 
in table 2. 

In this way we have mapped out the phase boundary between the Ortho I and Tetra 
phases. In figure 5 we show our estimates and, for comparison, the transfer matrix results 
of Aukrust eta! [17]. The agreement is excellent. 

~ 

~ 
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Table 1. Coefficients of the staggered magnetiration series for thRe choices of parameters, as 
shown. 

u2 = 0.3962 
u3 = 2.5240 
y = 1.0000 

1.OOOOOOEO 
0.000000EO 

-2.~0000EIl 
-8.OOOOOOEO 
-6.683992El 
-2.403549E2 - 1.392 90783 
-6.705846W 
-3570318E4 

= 0.3875 
u3 = 2.5806 
y = 0.5000 

I.wOOOOE0 
0.000000EO 

-2500000EO 
-8.OOOOWEO 
-8.274 108El 
-2924326E2 
-1.732 184W 
-9233 300E3 
-4.766 731E4 

u2 = 0.2435 
u3 = 4.1068 
y = 0.0250 

1.MH)oOOEO 
0.wOWOEQ 

-4.002500El 
- 8 . ~ 0 0 0 E O  
-7.263 382E3 
-2.850 047E4 

3.126554ES 
-9586626E6 

8.829626E7 

Table 2. Resulh of Pad6 appmximant analysis of the staggered magnetization series for two 
os=: (a) uniform chemical potential, 6 = I: (b) non-uniform chemical potential, 6 = 0.95. 

(4 u2 U 3  Y U ~ S  kTIV1 P I K  
0.3962 25240 1.0000 0.1569 05400 2.wOO 
0.3875 25806 05000 0.1502 0.5274 1.6344 
0.3718 2.6896 0.3000 0.1382 05054 1.3915 
0.3548 2.8185 0.2000 0.1259 0.4825 12235 
0.3239 3.0874 0.1080 0.1049 0.4435 1.0129 
0.2784 35920 0.0480 0.0775 0.3911 0.8126 
0.2435 4.1068 0.WO 0.0593 0.3540 0.6942 
0.1634 6.1200 0.0060 0.0267 0.2760 0.5878 

(b) u2 U3 Y UIC kTIK P I V I  

0.4117 
0.4023 
0.3857 
0.3673 
0.3351 
0.2880 
0.2539 
OT17W 

2.4290 
2.4857 
2.5927 
2.7226 
2.9842 
3.4722 
3.9386 
5.8824 

1.0000 
0.5139 
0.3137 
0.2110 
0.1155 
0.0520 
0.0279 
0.0067 

0.1695 
0.1618 
0.1488 
0.1349 
0.1123 
0.0829 
0 . W  
0.0289 

0.5634 
0.5491 
0.5249 
0.4992 
0.4574 
0.4017 
0.3647 
0.2822 

2.wOo 
1.6344 
1.3915 
1.2234 
1.0129 
0.8126 
0.6942 
0.5878 

4. Uniaxial anisotropy 

In our analysis above the sublattices A, B were equivalent. This means that the filled oxygen 
chains may lie in either of the diagonal directions in figure 1. Experimentally this occurs 
and leads to twinning. By applying a uniaxial stress during growth, twinning can be avoided 
or reduced [22-241. This can be modelled by making the V,, V3 interactions anisotropic 
or, more simply, by choosing a chemical potential which is sublattice-dependent and hence 
favours one sublattice. We use this latter approach here, and choose pA = p, p g  = p - 6, 
with S > 0. The atoms will then preferentially occupy sublattice A. In the formulation of 
our low-temperature expansion this gives YA = y, y~ = yc2. with 5' = exp(-$s). It is 
straightforward to show that this leads to the substitution in the quantity L, 

Note that this depends on both r and n. Thus, for example 
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With this change all of the previous results can be used. 
The same method'of analysis can be used. In table 2 and figure 5 we present results for 

the choice { = 0.95 which corresponds, roughly, to a 5% decrease in chemical potential 
on one sublattice. The transition temperature is also found to increase by about 5%. 
Unfortunately no experimental data seem'to be available to check this result 

5. Conclusions 

We have developed a low-temperature expansion- for the previously studied lattice-gas 
model of oxygen ordering in YBa~cu30~+,. Because of the rather complex nature of 
the Hamiltonian this is quite difficult to extend to high  order, but we have been able to 
obtain seriesfor the order parameter and susceptibility in the Ortho I phase, to eighth-order 
in the 'temperature' variable. .Analysis of the resulting series locates the Ortho I-Tetra phase 
boundary to an accuracy at least equal to that achieved by other methods, and confirms the 
expected universal Ising nature of the transition [16]. Our results are in excellent agreement 
with previous studies. 

We have also extended OUT series to the,case of a sublattice-dependent chemical potential, 
to model the case of a uniaxial stress. This leads to an increase in the critical temperature, 
but a detailed comparison with experiment is not possible at this stage. 

Finally we have also attempted to derive a low-temperature expansion in the Ortho 
II phase hut this has been Iargely unsuccessful, due to the difficulty of finding a suitable 
expansion variable which does not require contributions from graphs with excessively many 
overturned spins. 

~. 
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Appendix 

Leading terms in the quantities L&I, u2. 143. y). For convenience a teim of the form 
c u r u p u s e p 4  is represented as c(pl, p2, p3, p4). 

L1 = (2.1.1, 1) ~ 

Lz =.2(3,2,2,0) f (4, 1,2,2) + (4.2, 1,2) - 2(4,2,2,0) - 24(4,2,2,2) 

L3 = Z(4.2.3, 1) + Z(4.3.2.1) + 2(4,3,3,1) + 4(5,2,3,1) + 4(5,3,2,1) - 24(5,3,3,1) 

+ (6,1,3,3) +4(6,2,2. 3) - 6 6  2,3, I) - 8 6  2,3,3) + (6,3,1,3) ~ 

- 6(6,3,2, 1) - 8(6,3,2,3) + ZZ(6.3.3.1) + 10$(6,3,3,3) 
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